5 Gauss sats. div. dv = A V. Noterbart är att V AdV = A ˆNdS, dvs Gauss sats, har strukturella likheter med b df

Storlek: px
Starta visningen från sidan:

Download "5 Gauss sats. div. dv = A V. Noterbart är att V AdV = A ˆNdS, dvs Gauss sats, har strukturella likheter med b df"

Transkript

1 5 Gauss sats Betrakta ett vektorfält A. i låter en sluten ta, med utåtriktad normal ˆN, begränsa ett område. Antag nu att A är kontinuerligt deriverbart i hela. Under dessa premisser gäller Gauss sats div }{{ A } d A } ˆNd {{}. A d Noterbart är att Ad A ˆNd, dvs Gauss sats, har strukturella likheter med b df d f(b) f(a). I båda a d fallen fås att då vi integrerar en funktions derivata över ett givet område, så blir resultatet endast beroende av funktionens värde på randen av området. Område (volm): Begränsningsta: Ytans utsida är positivt orienterad d N Innan vi går djupare in på Gauss sats uppbggnad och dess fsikaliska tolkning, kan det vara upplsande att först se prov på såväl dess praktiska användbarhet som dess begränsningar. i ger därför två beräkningseempel nedan. Eempel : i söker flödet av A ( + 2, 3, 0) ut ur ett klot med radien R och begränsningstan. Det utgående flödet av A ur fås genom att beräkna flödesintegralen av A med utåtriktad normal ˆN till d och ges, enligt Gauss sats, av A d Ad d 4πR3 3, där vi använt oss av att ( + 2, 3, 0). Ovanstående resultat stämmer väl överrens med tidigare beräkning av samma flödesintegral, se kapitel (utsidan) + - (insidan) d R N 2 Eempel 2: Ett varnande eempel Betrakta nu ett elektriskt fält E r r 3 runt en punktladdning som är placerad vid origo. i söker flödet av E ut ur ett klot, centrerat kring origo, med radie R och begränsningsta. En direkt beräkning av flödesintegralen ger: r E ˆN }{{} d R r R2 d 3 R R 4 4πR2 4π, r R där vi utnttjat att r r R 2 på tan (sfären). Om vi istället tillämpar Gauss sats rakt av fås E d Ed [ ] 3 d ( }{{ 3) 3/2 2 ( }}{{ 3) 3/2 3 ( }}{{ 3) 3/2 } r 3/2 32 r 5/2 0d 0 4π. r 3/ r 5/2 r 3/ r 5/2

2 å, vad gjorde vi för fel? arför gav ovanstående beräkning med Gauss sats inte det rätta svaret 4π? Anledningen till denna avvikelse är att E har en singulär punkt i origo, dvs E(r) då r 0. ektorfältet E är därmed inte kontinuerligt deriverbart i hela området, då även inkluderar origo. Gauss sats kan därför inte tillämpas på problemet ifråga. i återkommer till detta varnande eempel i ett senare kapitel, för att mer utförligt diskutera hur singulära punkter likt denna bör hanteras. Divergensen Divergensen av A spelar, som snes, en central roll i Gauss sats. i tar därför nu en närmare titt på vad Gauss sats säger om just A. Om vi krmper området till ett mindre område (t.e. likt det i figuren till höger), vilket är centrerat kring punkten P, så fås att ( A) P A d, där är begränsningstan till. I ovanstående uttrck har vi utnttjat att det beskedligt varierande A är nästintill konstant inom det lilla. I gränsen 0, erhålls likheten (div A) P ( A) P 0 A d, Litet område: Δ Begränsningsta: Ytans utsida är positivt orienterad Punkt P givet Gauss sats. om kommentar kan nämnas att ovanstående formel faktiskt ibland används som själva definitionen på divergensen. En anledning därtill är att vi, med ovanstående uttrck som definition, slipper utgå ifrån (,, ), vilket bgger på ett specifikt koordinatsstem (nämligen det kartesiska). Bevis: i visar nu att ovanstående uttrck för A i punkten P även fås ur en direkt beräkning av högerledets flödesintegral, dvs utan att åberopa Gauss sats. För att förenkla beräkningen av flödesintegralen väljer vi till en låda, med sidlängderna, och (se figuren till höger). Mitt i ligger punkten P : ( 0, 0, 0 ). Det skall understrkas att samma slutresultat, dvs att ( A) P 0 A d, fås oberoende av formen på, förutsatt att krmper kring och till punkt P. 2 Lådan har se ttersidor; två av dessa är parallella med -planet, två med -planet och två med -planet. i kan därmed dela upp flödesintegralen i tre olika bidrag A d F + F + F, där F i är nettoflödet av A ut ur lådan genom de två sidor vars normal är riktad i i- led. Till eempel, nettoflödet F fås av tintegralerna över :s deltor och 2 (som är parallella med -planet, se figuren ovan). i påminner om att tan :s utsida är

3 positivt orienterad, vilket betder att normalen till ges av ˆ och till 2 av ˆ. i kan därmed beräkna nettoflödet F som F A ˆd + A ( ˆ)d 2 A ( 0 +,, )dd A ( 0,, )dd 2 2 [ A ( 0 + 2,, ) A ( 0 ],, ) dd, 2 där är den gemensamma projektionen av och 2 i -planet. Ovanstående uttrck kan förenklas tterligare med hjälp av integralkalklens medelvärdessats, varpå vi får att [ F A ( 0 + 2,, ) A ( 0 ] 2,, ), där (0,, ). Härnäst används differentialkalklens medelvärdessats, vilket ger att F A ( 0 + θ 2,, ) A }{{} (P ), där θ och där punkten P ligger inom. I samband med att reduceras kring och till punkt P måste även P P. Med andra ord, 0 F A (P ). På liknande sätt fås bidragen F och F till 0 0 F A (P ), F A (P ). ammantaget blir därmed 0 A d v 0 vilket var vårt mål att visa. ( (F A + F + F ) + A + A ) P ( A) P, ambandet ( A) P 0 A d ger även en tdlig fsikalisk tolkning av divergensen. om snes beskriver divergensen av A i en punkt P storleken på flödet av A ut från punkten, dvs A är ett mått på A:s spridning. e även vår tidigare diskussionen kring divergensen i kapitel 2.6. Bevis av Gauss sats Med utgångspunkt i ( A) P 0 A d,

4 vilken vi nss visat genom att utföra den faktiska flödesintegralsberäkningen, fås Gauss sats naturligt. i tänker oss här ett område, med begränsningstan, som uppbggt av infinitesimala lådor d, med tillhörande tor. För varje enskild låda d i gäller att Ad A d. Totalt sett, om vi lägger samman alla lådor, fås följdaktligen att Ad A d, N Område uppdelad i delområden Δ vilket är Gauss sats. Notera att det endast är flödet på :s rand som överlever i högerledet. Bidraget från tor mellan två lådor tar nämligen ut varandra, då torna som tillhör olika lådor har motriktade normaler (se figuren nedan). Fsikalisk tolkning av Gauss sats En möjlig fsikalisk tolkning av Gauss sats fås genom att betrakta en stationärt strömmande, inkompressibel och homogen vätska. ätskans hastighet, i m/s, ges av det tidsoberoende vektorfältet v(,, ). i tar nu en närmare titt på vätskan vid ett infinitesimalt område d, med begränsningstan. Ut ur d strömmar v d vd kubikmeter vätska per sekund. För att vätskans flöde skall kunna vara stationärt, dvs inte förändras med tiden, måste vd kubikmeter vätska också produceras per sekund i d. Av denna anledning kallas div v av ett tidsoberoende vektorfält v för källtätheten, vilket är lika med producerad mängd/(m 3 s). i lfter nu blicken och undersöker ett större område, med begränsningstan. Gauss sats v d vd, säger nu, i denna tolkning, att nettoflödet per sekund av vätska ut genom är samma som nettomängden vätska producerad i hela per sekund. Till sist några ord om källtätheten div v. Om ( v) P > 0 betder det att vätska skapas i d. Man kan, i princip, tänka sig att det då lokalt sker någon tp av kemisk reaktion som producerar vår vätska. Alternativt kan man tänka sig att d innesluter ett utlopp från en vattenkran ur vilken vätska flödar. Om istället ( v) P < 0 förintas (eller annihileras) vätskan istället. i har i detta fall sänkor i d. Normal vätskeflöde är förstås källfritt, dvs v 0 överallt. Källfritt fält Ett källfritt (eller solenoidalt) fält A kännetecknas av att A 0. Enligt Gauss sats fås, i detta fall, att A d 0,

5 för alla slutna tor (förutsatt att A är kontinuerligt deriverbart). Ovanstående likhet medför i sin tur att flödesintegralen A d (obs: ej sluten ta) endast beror av :s randurva L. i påminner här om likheten till fallet då L A dr 0 för alla L, vilket innebar att L A dr endast berodde av kurvans ändpunkter (se kapitel 4.2). En annan intressant egenskap hos ett källfritt fält A är att det kan beskrivas med hjälp av en vektorpotential B, som A B. Alla källfria vektorfält kan alltså skrivas på ovanstående form, med vektorpotentialer. i går inte in närmare på beviset, utan noterar istället att ( B) }{{ 0, } A se kapitel 2.4. Med andra ord; om ett vektorfält A kan skrivas som A B måste det också vara källfritt. Kontinuitetsekvationen i studerar nu ett tidsberoende, dvs icke-stationärt, flöde. Hastigheten v beror nu också på tiden t, dvs v(r, t). i inför även tätheten ρ(r, t), i någon mändenhet/m 3. Eemepelvis, ρ kan vara massdensiteten (med mängdenheten kg), eller energidensiteten (med mängdenheten J). Mängden av ämnet i, med begränsningsta, vid tiden t ges av M(t) ρ(r, t)d. id en kort tid, t, senare fås mängden som M(t + t) M(t) + dm dt t M(t) + ρ d t. t }{{} M Ändringen M i M kan ha två olika fsikaliska förklaringar:. Inströmning genom. Med utåtriktad normal ˆN till d, fås bidraget M ρv ˆNd t (ρv)d t, till den totala ändringen i M. ista likheten följer direkt av Gauss sats. I ovanstående uttrck har vi även använt oss av det faktum att flödesvolmen som passerar genom d i normalen ˆN:s riktning under den korta tiden t ges av v ˆNds t (se kapitel 4.3). Minustecknet framför integralen är till för att säkerställa att M > 0 vid ett nettoflöde in till (och ej ut ur). 2. Produktion i med källtätheten κ(r, t), i mängdenhet/(m 3 s). En produktion av ämnet i under tiden t ger bidraget M 2 till ändringen i M, där M 2 κd t. Noterbart här är att källtätheten κ ej tvunget är identiskt med div(ρv). Anledningen därtill är att (ρv) förknippas med utflödet av ämnet genom (se punkt ovan).

6 Det är således endast för stationärt strömmande vätskor, dvs för tidsoberoende v, som mängden av ämnet som produceras inom per sekund nödvändigtvis är lika med mängden som lämnar genom per sekund. Den totala ändringen i M kan alltså skrivas som M M + M 2 ρ d t (ρv)d t + t i förkortar bort t, samt ändrar om till ( ) ρ t + (ρv) κ d 0. κd t. Då området är godtckligt, måste ρ t + (ρv) κ 0, gälla. Detta är kontinuitetsekvationen. Denna ekvation är grundläggande vid alla studier av strömning. Eempelvis, med mängdenhet kg kan diffusion beskrivas och med mängdenhet J värmeledning. En liknande ekvation förekommer också inom kvantmekaniken, för att beskriva sannolikhetsströmmar.

7 Övningsuppgifter 5. Beräkna div F för a) F (,, ) r b) F (sin(), e 2, cos 2 ()) c) F grad Φ med Φ Beräkna div F om F ˆ + ŷ + ẑ r ( ) /2 r 5.3 Beräkna divergensen av vektorfälten A (,, 0) och B (,, 0), jämför med övningsuppgift Kontrollera Gauss sats för funktionen v ˆ + 2ŷ + 3ẑ. Använd kuben i figuren. 5.5 Beräkna flödet av F ut ur tan om är tan till området som begränsas av planen 0 och 2 och tan Tag F ( 2, 2, 2 ). 5.6 Beräkna det största värde som B d antar, då är en sluten ta och B ( 3, 3, 3 )/3. Ange för vilken sluten ta som detta maimum erhålls. 5.7 Använd Gauss sats för att beräkna flödet i övningsuppgift F 3ˆ + 3 ŷ + 3 ẑ. Beräkna F d där är tan av halvsfären { R Använd Gauss sats för att beräkna flödet av vektorfältet A ( 2, 2, 2 + 2) ut ur den clindriska burk som avgränsas av torna 2 + 2,,. Kontrollera resultatet genom att beräkna flödet direkt.

3 Parameterframställningar

3 Parameterframställningar 3 arameterframställningar Från och med nästa kapitel kommer mcket av vårt fokus ligga på olika integraluttrck med vektorvärda funktioner. Vi kommer eempelvis studera integreringen av vektorfält både längs

Läs mer

Övning 6, FMM-Vektoranalys, SI1140

Övning 6, FMM-Vektoranalys, SI1140 Övning 6, FMM-ektoranalys, I114 ˆ 6. Beräkna integralen där A dr A x 2 ay + z) ) e x + y 2 az ) e y + z 2 ax + y) ) e z och är den kurva som utgör skärningslinjen mellan cylindern { x a) 2 + y 2 a 2 och

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

Integranden blir. Flödet ges alltså av = 3

Integranden blir. Flödet ges alltså av = 3 Lektion 7, Flervariabelanals den 23 februari 2 6.4.2 Använd Gauss sats för att beräkna flödet av ut ur sfären med ekvationen där a >. Flödet ut ur sfären ges av F e e + 2 e e + e 2 + 2 + 2 a 2 F d, som

Läs mer

Integraler av vektorfält Mats Persson

Integraler av vektorfält Mats Persson Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på

Läs mer

20 Integralkalkyl i R 3

20 Integralkalkyl i R 3 Nr,9maj-,Amelia Integralkalkl i R 3 VI kommer härnäst att studera integraler av tredimensionella vektorfält: F(,, ) = (P (,, ), Q(,, ), R(,, )). Vi generaliserar kurvintegraler och Greens formel från R

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

Poissons ekvation och potentialteori Mats Persson

Poissons ekvation och potentialteori Mats Persson 1 ärmeledning Föreläsning 21/9 Poissons ekvation och potentialteori Mats Persson i vet att värme strömmar från varmare till kallare. Det innebär att vi har ett flöde av värmeenergi i en riktning som är

Läs mer

Den vanliga koordinaterna, betecknas (x, y, z) med enhetsvektorerna î, ĵ och. z k

Den vanliga koordinaterna, betecknas (x, y, z) med enhetsvektorerna î, ĵ och. z k Vektorkalkl I fsiken har vektorfält stor betdelse inom bl.a. mekaniken och elektrodnamiken. I ett skalärfält har varje punkt i rmden ett visst värde, t.e. i en vattenbalja kan vi sätta en temperatur i

Läs mer

Flervariabelanalys E2, Vecka 6 Ht08

Flervariabelanalys E2, Vecka 6 Ht08 Flervariabelanalys E2, Vecka 6 Ht08 Omfattning 6., 6.3-6.5 Innehåll: Gradient, divergens, rotation, Greens sats/formel, divergenssatsen i två och tre dimensioner, tokes sats tma043 V6, Ht08 bild Mål: För

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se Flervariabelanalys E2, Vecka 6 Ht09 Kapitel 6. -

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys III Anders Karlsson Institutionen för elektro- och informationsteknik 16 september 215 Översikt 1 Gauss sats divergenssatsen Exempel på användning av Gauss sats 2 tokes sats Exempel på användning

Läs mer

Hydrodynamik Mats Persson

Hydrodynamik Mats Persson Föreläsning 5/10 Hydrodynamik Mats Persson 1 De hydrodynamiska ekvationerna För att beskriva ett enkelt hydrodynamiskt flöde behöver man känna fluidens densitet,, tryck p hastighet u. I princip behöver

Läs mer

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2 Lektion 6, Flervariabelanals den februari 6.. Beräkna div F och rot F av F e + e. Divergensen och rotationen ges av div F F,,,, + + + +, rot F F,,,, e e e z, +,,,. rot F F,, e e e z z, z, z z z, + z, z

Läs mer

TATA44 Lösningar 26/10/2012.

TATA44 Lösningar 26/10/2012. TATA44 Lösningar 6/1/1. 1. Lösning 1: Konen z x + y skär sfären x + y + (z 5 5 då 4z + (z 5 5 och enkla räkningar ger nu z z some ger z(z och vi ser att z eller z. Observera att punkter på sfären med z

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x Föreläsning 2 1 Matematiska grundbegrepp Fält kalärfält: Vektorfält: Till varje punkt i rummet tilldelas en skalär Exempel: Temperaturen i olika punkter i rummet, T r,t ( ) = T ( x, y, z,t) Till varje

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

22 Vektoranalys och flödesintegraler

22 Vektoranalys och flödesintegraler Nr, maj -5, Amelia ektoranalys och flödesintegraler. Mera om gradient ( ), divergens ( ) och rotation ( ) Notera att ett vektorfält är en funktion R 3 R 3 (fetstil F) medan ett skalärt fält är en funktion

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

18 Kurvintegraler Greens formel och potential

18 Kurvintegraler Greens formel och potential Nr 8, 6 april -5, Amelia 8 Kurvintegraler Greens formel och potential 8. Greens formel Vi studerar i detta avsnitt kurvor i planet, i R. En kurvintegral är som vi sett en integral på en kurva i planet.

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv 1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska

Läs mer

Elektromagnetiska falt och Maxwells ekavtioner

Elektromagnetiska falt och Maxwells ekavtioner Forelasning /1 Elektromagnetiska falt och Maxwells ekavtioner 1 Maxwells ekvationer Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullstandig beskrivning av ett elektromagnetiskt falt. Dock,

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014 SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater.

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater. TATA Lösningar /8/.. Låt vara den del av x + y + z innanför cylindern x + y. Inför cylinderkoordinater. Parametrisera med ortsvektorn r(ρ, φ (ρ cos φ, ρ sin φ, ρ som man kan skriva som r(ρ, φ ρ ˆρ + ρ

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

4 Integrering av vektorfält

4 Integrering av vektorfält 4 Integrering av vektorfält 4.1 Integrering av vektorvärda funktioner Vi börjar vår undersökning av hur vektorfält integreras med att studera en styckvis kontinuerlig funktion A av flera oberoende variabler

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv Flervariabelanalys I Vintern 11 Översikt föreläsningar vecka 6 tintegraler Givet en yta i rummet och en funktion f x, y,z f dsdär ds är det så kallade ytelementet. ( ) kommer vi att studera ytintegraler,

Läs mer

FFM232, Klassisk fysik och vektorfält - Veckans tal

FFM232, Klassisk fysik och vektorfält - Veckans tal FFM232, Klassisk fysik och vektorfält - eckans tal Tobias Wenger och Christian Forssén, Chalmers, Göteborg, Sverige Oct 3, 2016 Uppgift 6.6 (Cederwalls kompendium) Beräkna normalytintegralen av a F 2 [

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE , kl

Tentamen i Flervariabelanalys F/TM, MVE , kl Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4

Läs mer

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén Tavelpresentation Grupp 6A avid Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén 3 mars 2017 1 Potentialfält Vi har tidigare introducerat vektorfält i planet som funktioner

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y,

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y, Tentamensskrivning i flervariabelanals F (MVE05) och reell matematisk anals F, delb (TMA975), 006-0-0, kl 80-0 i V Telefon: Johan Jansson, tel 076-7860 Låt f (, = 6 a) Ange en ekvation för tangentplanet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Strålningsfält och fotoner. Våren 2016

Strålningsfält och fotoner. Våren 2016 Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson Föreläsning 26/9 Elektromagnetiska fält och Maxwells ekavtioner 1 Maxwells ekvationer Mats Persson Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullständig beskrivning av ett elektromagnetiskt

Läs mer

4. Beräkna volymen av den tetraeder som stängs inne mellan koordinatplanen x = 0, y = 0 och z = 0 och planet. x F (x, y) = ( x 2 + y 2, y

4. Beräkna volymen av den tetraeder som stängs inne mellan koordinatplanen x = 0, y = 0 och z = 0 och planet. x F (x, y) = ( x 2 + y 2, y ATM-Matematik Mikael Forsberg 7- För studenter i Flervariabelanals Flervariabelanals mkb 6 krivtid: 9:-:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams alculus, dessa formler bifogas tentan.

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 2, 2017 10. Värmeledning, diffusionsekvation Betrakta ett temperaturfält

Läs mer

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log.

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log. Lektion 13, Flervariabelanals den 15 februari 2 15.1.2 Skissera vektorfältet och bestäm dess fältlinjer. F, = e + e I varje punkt, har vektorfältet en vektor med komponenter,, d.v.s. vektorn utgående från

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Tentamen TMA043 Flervariabelanalys E2

Tentamen TMA043 Flervariabelanalys E2 Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Lösningsförslag till TMA043/MVE085

Lösningsförslag till TMA043/MVE085 MAEMAIK Hjälpmedel: bifogat formelblad, ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola atum: 988 kl. 4. - 8. entamen elefonvakt: avid Heintz elefon: 76-786 Lösningsförslag till MA4/MVE85

Läs mer

6 Greens formel, Stokes sats och lite därtill

6 Greens formel, Stokes sats och lite därtill 6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att

y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att TH-Matematik Lösningsförslag till Tentamenskrivning 5-6-, kl. 8.-3. 5B7, matematik III för E och ME 6p) Del A, 3-poängsuppgifter x. xy y )dy dx x y y3 3 ) * x 3 x3 3, x3 -. dx 5 5 x4 6 4 y x y 5 4 dx.

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

Tentamen MVE035 Flervariabelanalys F/TM

Tentamen MVE035 Flervariabelanalys F/TM entamen MVE35 Flervariabelanals F/M 17-8- kl. 14. 18. Examinator: Peter Hegart, Matematiska vetenskaper, Chalmers elefonvakt: Peter Hegart, telefon: 766377873 alt. Ankn. 535, Anna Rehammar Hjälpmedel:

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt Tentamensskrivning i Matematik IV, 5B0. Onsdagen den 0 oktober 004, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att

Läs mer

15 Multipelintegraler, sfäriska koordinater, volymberäkningar

15 Multipelintegraler, sfäriska koordinater, volymberäkningar Nr 5, 9 april -5, Amelia 5 Multipelintegraler, sfäriska koordinater, volmberäkningar 5. Multipelintegraler et finns många tillämpningar där fler än tre variabler är aktuella. I statistik kan vi vilja undersöka

Läs mer

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, oktober, 006 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori Varje uppgift ger 0 poäng. Delbetyget

Läs mer

1.1 Gradienten i kroklinjiga koordinatsystem

1.1 Gradienten i kroklinjiga koordinatsystem 1 Föreläsning 4 1.1 Gradienten i kroklinjiga koordinatsystem Sats 1 i sfäriska koordinater; i cylindriska koordinater. Bevis. I kartesiska koordinater har vi att Φ = r ˆr + 1 r θ ˆθ + 1 ˆϕ (1 r sin θ ϕ

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

21 Flödesintegraler och Gauss sats

21 Flödesintegraler och Gauss sats Nr 2, maj -5, Amelia 2 2 Flödesintegraler och Gauss sats 2. DivergensochGausssats 2.. Flöden genom slutna ytor I detta avsnitt beräknar vi flödesintgraler på slutna ytor. Låt oss tänka oss en vind, som

Läs mer

Föreläsning 16, SF1626 Flervariabelanalys

Föreläsning 16, SF1626 Flervariabelanalys Föreläsning 16, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 5 december 2017 KTH Rekommenderade uppgifter: 16.1: 3, 7, 11. 16.2: 9, 15, 17. Gradient, divergens, och rotation Gradienten Om

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

Lösningar till seminarieuppgifter

Lösningar till seminarieuppgifter Lösningar till seminarieuppgifter 2018-09-26 Uppgift 1 z ρ P z = 0 ρ Introducera ett koordinatsystem så att det jordade planet sammanfaller med planet z = 0, oc skivans centrum med punkten (0,0,). a) Problemet

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Flervariabelanalys E2, Vecka 5 Ht08

Flervariabelanalys E2, Vecka 5 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 5 Ht08 15.1 Vektorfält och skalärfält 15.2 Konservativa vektorfält (t.o.m. exempel 5) 15.3 Kurvintegraler 15.4 Kurvintegral av vektorfält 15.5 Ytor

Läs mer

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation. SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält. Rep. Kap. 7 som behandlade kraften på en laddningar från ett -fält. Kraft på laddning i rörelse Kraft på ström i ledare Gauss sats för -fältet Inte så användbar som den för E-fältet, eftersom flödet här

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt

Läs mer